If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+5x-1200=0
a = 2; b = 5; c = -1200;
Δ = b2-4ac
Δ = 52-4·2·(-1200)
Δ = 9625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9625}=\sqrt{25*385}=\sqrt{25}*\sqrt{385}=5\sqrt{385}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5\sqrt{385}}{2*2}=\frac{-5-5\sqrt{385}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5\sqrt{385}}{2*2}=\frac{-5+5\sqrt{385}}{4} $
| 2x^+5x-1200=0 | | X-14y=14 | | 0,1x=-8 | | -7x-15=-18 | | (0.25(2x+1))=64 | | 7p+6÷4= | | –y–1=-2y | | b-4/2=9 | | 5-v/2=9 | | |2m-6|=12 | | 7b=-5 | | x^2-0.5x-0.75=0 | | 2(10-2f)=8(4-f)= | | 5-3(2x-7)=2x-(x+2) | | 0,5.x+2,5=0 | | 0,5.x=2 | | 4.x-1=7 | | 7k=20 | | 3(x+2)=2(x+0,5) | | (12x-5)+(3x+45)=90 | | 12x-5+3x+45=90 | | 5y-24=52 | | 5=12n | | m÷4-6=15 | | 10a=360 | | 5(4w+4)/2=-8 | | 5x–7=45 | | -10(t+2)=-87 | | 2r-3/5=2+r | | 5/2=(1.12)^n | | 1000(5/4)^n=1200((5/4)^(n−1)) | | 5x+24=10x+9 |